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Abstract 
It is easy to generate a series of possible grasps through a 

state-of-the-art automatic grasp planner, but it is hard to 

figure out which grasp is better by the robot itself. A 

learning-based approach is presented in this paper to solve 

this problem. In order to develop an algorithm that predicts 

the quality of a robotic grasp before execution, a large grasp 
sample data set is collected, including human-planned 

grasps and automatic grasps. This paper first conducts a 

thorough statistical analysis of the ability of grasp metrics 

that are commonly used in the robotics literature to 

discriminate between good grasps and bad grasps. Then, the 

principle component analysis is employed to obtain those 

discriminative metrics, as well as reducing the dimension of 

feature space. Finally, The Gaussian process algorithm is 

applied to build a classifier that identifies grasp quality. 

Moreover, through comparing human-planned and 

automatic grasps, regions of poor exploration and regions 
of poor performance will be identified, which can speed the 

automatic searching of grasp planner dramatically. 

I. INTRODUCTION 

Learning-based control has been an explosion of work in 

many areas over the last decade. Especially, robotic control 

plays an important role in mapping from the state of the 

arm (position, velocities and accelerations). When it comes 
to robotic control, the most we concern about is how to 

identify the good action from those bad ones. Consequently, 

classification of robot grasp is necessary for future robot 

learning. 

The goal of this paper is to classify the grasps into good 

and bad classes. In order to record the process of grasping, 

Force sensors are used to generate twelve parameters [1]. 

However, there are significant difficulties of these methods. 

Because of the complicate structure of human hand, it is 

impossible to make a direct observation of its configuration 

in grasping experiments. Another problem is limitation of 
human-planned grasps through teleportation. Most robot 

hand can only have 6 degrees of freedom, but a human hand 

has over 22 degrees of freedom. 

This paper will try to get over the challenges above to 

identify the key of human grasping. Gaussian process (GP) 

is employed to collect the data, which can give a 

straightforward expression of human’s behavior [2]. 

Through the classification of these grasps, roboticist can 

analyze the optimization of different features. But neither 

choosing nor producing the best solution will not be 

discussed in this paper. 

In purpose of addressing these problems, two different 

approaches can be applied in classification. The first one 

sets up the class-conditional distribution p(x|y) and the 

initial probabilities for each class, and then calculates the 

fitted probability for each class. The other approach focuses 

on model p(y|x) directly. Because classification problem is 

a binary (two-class, C=2), the main idea is to transfer the 

output of a regression model into a class distribution.  

The contribution of this paper is to use GP combined 
with function approximation (mean and covariance 

functions) to implement classification problems. To reduce 

the dimensionality of grasping, principal component 

analysis will be applied in data collecting. Also, supervised 

learning is used to find how adjustable parameters in 

covariance functions can be inferred from the training 

dataset. 

In Section 2, the two main techniques to transfer the data 

and classify them are introduced. Section 3 shows some 

relevant algorithm compare with GP. The approaches that 

are applied in the grasp prediction are presented in Section 
4. In Section 4, the results of classification are discussed.  

II. BACKGROUND 

Mainly two techniques will be used to build a grasp 

quality prediction algorithm. This section provides 

background information on the two main techniques. First, 

a grasp sample data is an eleven or twelve dimensional 

vector, and hundreds of grasp data will form a high 
dimensional space. Obviously, it’s time-consuming to 

analyze those data directly. Therefore, Principal Component 

Analysis (PCA) is used for data dimensionality reduction. 

Then it need to classify the grasp data (processed by PCA) 

into good grasps and bad grasps, where Gaussian Process 

(GP) algorithm is employed.  

It has be known that those grasp metrics have strong 

correlations between each other, and some metrics have 

poor predictive ability. Moreover, correlations between the 

grasp metrics can lead to poor performance and increase 

computation costs during training process. In order to deal 
with this problem, Principal Components Analysis (PCA) is 

used to perform a dimensionality reduction of our data by 

reducing the data to only the principal components that 



preserve the majority of the data’s variance. Then different 

number of principle components is test to search how many 

PCs that are kept during leaning process will achieve better 

performance. In this work, the high dimensional grasp 

sample data is reduced as low as possible, maybe to three or 

four dimensions, then project the data into those dimensions 
and observe how it affects the classifier’s performance. 

 

A Gaussian Process (GP) is a non-parametric model that 

can be used for supervised learning. Specifically, given a 

set of n training samples D = {(x1, y1), … , (xn, yn)}, where 

xi is a feature vector and yi is the output value, the algorithm 

learns a nonlinear function f(x) that generalizes from the 

training data in order to predict the output value y for some 

new data instance x. One of the key benefits of using a GP 

for predicting grasps is its ability to model nonlinear 

decision surfaces [3]. A GP is a stochastic process that 

models a distribution over functions f(x), rather than just 
modeling a single function f(x) [4, 5, 6]. In our work, each 

data instance xi is a grasp, which has k features, 

corresponding to the k grasp metrics used to represent it. 

The GP is used to predict a continuous output value that 

represents the quality of grasp. 

III. RELATED ALGORITHMS 

There are several machine learning techniques to 

implement a binary classification by using a kernel function. 

Support vector machine (SVM) and neural network—two 

of the most effective ways to recognize the patterns of a 

given data set. 

A) Support Vector Machine 

Support vector machine (SVM) can find a hyperplane to 

separate the data points to different categories. It can also 

address non-linear classification by using a kernel function 

to map inputs into high-dimensional spaces. If the space is 

defined as D dimensions, the hyperplane called classifier 

would be D-1 dimensions [7]. The aim of SVM is to obtain 

the largest distance of adjacent data points. SVM became 
popular and pragmatic because of its extension of soft 

margin. Soft margin method provides an increment of the 

distance between data points. The increment makes it easy 

to choose a hyperplane which can split the samples. As a 

common kernel, Gaussian radial basis function can be a 

useful one used in SVM. It is because the space that 

Gaussian radial basis function maps input into is a Hilbert 

space of infinite dimensions [8]. The single parameter γ of 

Gaussian kernel is the key to regularize the margin 

classifiers. Various combinations of γ and soft margin 

parameter can generate different model of classification, 

which is also the main drawback of SVM [9]. Even though 
cross validation is applied during processing, it is still hard 

to get a satisfied result. Some attempt on SVM will be 

performed in this paper, as well as a compare between 

SVM and Gaussian process 

B) Neural Network 

Neural network is a little similar to biological neural 

networks to some extent. However, modern version of 

neural network is totally different from biology to adjust 

itself to a more practical system on signal processing. It 

builds the connection between inputs and outputs by 
updating network weights to minimize error. The most 

difficulty of neural network is the complicate parameters 

which is hard to interpret. The association of different 

layers of neurons and the learning process for weights are 

both challenges for most classification [10].  

C) Attempt on SVM 

Since the neural network needs to determine many 

parameters, such as architecture, activation functions and 

learning rate, it does not a practical solution for the problem 

in this paper. So, only SVM will be discussed here. The 

distribution of collected grasp data is shown in Fig. 3.1, 

where the data are all processed by PCA, and only first two 

and three principle components are presented. 

 
Fig. 3.1 Data distribution in 2D and 3D  

(red points are good grasps, blue points are bad ones) 

Applying SVM on the data and modifying its parameter, 

a ROC curve can be obtained to present the performance of 
SVM, as shown in Fig. 3.2. 

 

Fig. 3.2 ROC curve of SVM 

Usually, a classifier’s predictions are used to create a 
Receiver Operating Curve (ROC) to analyze performance 

trade-offs. ROC is a common tool used in the machine 



learning community for evaluating the performance of a 

classifier. The shape of the ROC curve indicates how good 

the classifier is at keeping False Positive Rates (FPR) low 

and True Positive Rate (TPR) high.  

 

The area under the curve (AUC) value predicts the 
robustness of a classifier by showing its probability to 

correctly classify a grasp. An AUC value of 1 indicates 

perfect performance, and an AUC value of 0.5 indicates 

that the classifier behaves similar to random guessing. 

IV. APPROACH 

A) Data Preparation  

First of all, grasp data is generated. It can be used for 

obtain features vector, based on which good and bad grasps 

are identified. Here, the software named GraspIt, shown in 
Fig 4.1 is applied to generate grasps automatically through 

a state-of-the-art grasp planner. Given a common object, 

such as water bottle, soda can, remoter, and wineglass, the 

planner can generate tens of ways to grasp it.   

 

 

Fig. 4.1 A grasp generated by GraspIt 

Then, features of each available grasp is computed 

according to those raw data, including position and rotation 

of hand and object, contact point of finger tips, spread of 
fingers. These features will be the metrics to evaluate the 

quality of the grasps. Totally, twelve metric are involve in 

this project, shown by Table 4.1. They have been proposed 

in prior literature to infer grasp quality [11].  

 
Table 4.1 Metrics to infer grasp quality 

Metric Description 

Point Arrangement 
proximity of fingertips 
being in a plane parallel to 

palm 

Triangle Size 

Volume of the triangular 

prism consisting of the 

finger tips and the palm 

Finger Extension Average finger flexion 

Finger Spread 
Amount of spread of the 

fingers 

Finger Limit Extent of finger extensions 

Grasp Energy Distance of hand and object  

Parallel Symmetry 

Distance between center of 

mass and contact point 

centroid perpendicular to 

object principal axis 

Skewness 

Alignment of the hand 

principle axis parallel to the 

object principle axis 

Volume of Object Enclosed 

Object volume enclosed by 

hand normalized by object 
volume 

Wrench Space Volume 
volume of grasp wrench 

space 

Perpendicular Symmetry 

Distance between center of 

mass and contact point 

centroid along object 

principle axis 

Epsilon  
Minimum disturbance 

wrench that can be resisted 

 
So, a grasp is presented by a 12-D vector, which means 

all input will be displayed in a 12-D space. And hundreds or 

more grasps need to be collected in the future. Those high 
dimensional data will make learning slowly no matter 

which kind of learning algorithm is employed. Moreover, 

analyzing from the raw data, some metrics have relatively 

narrow variance, which is obviously disadvantage for 

identification. Thus, Principle Component Analysis (PCA) 

is used here to achieve dimensional reduction purpose. 

After PCA, the first one or more principle components may 

be selected as input matrix 𝐗 =  𝑥 1  , 𝑥 2  , ⋯   , 𝑥 𝑛 , where 

𝑥 𝑛 =  𝑥𝑛1 , 𝑥𝑛2 , ⋯ , 𝑥𝑛𝑚  T  is m inputs for the nth metric. 
How many components would achieve a better 

classification performance depends on the experiment result. 

In this project, maximum n should be 12, but in experiment 
will only use less than four components.  

 

 

Fig. 4.2 Simulation environment 

In order to build a supervised learning loop, quality of 

those generated grasps need to be given first. The method 

of obtaining those outputs is shaking test, an experiment 

from simulation world to real world. Specifically, the 

grasps will be verified first in a simulation environment to 

ensure that they are safe and available when executed on a 

real robot hand. Fig. 4.2 shows the verification in 

simulation environment (ROS and OpenRAVE).  



Finally, the real robot hand and object can be calibrated 

into the same posture and position as in the simulation 

environment. The scenario of shaking test is shown in Fig. 

4.3, which looks unmatched with Fig. 4.2 because they are 

not the same grasp exactly. Here just want to illustrate how 

the prior qualification data is obtained. 

 

 

Fig. 4.3 Scenario of shaking test (quoted from lab source) 

In shaking test, the object will be lifted after grasped by 

the robot hand, and the robot hand will shake with certain 

velocity and acceleration. If the hand can hold the object 

during shaking, the grasp is success. Otherwise, if the 

object falls down, the grasp is failed. From ten times of 

repeat test for each signal grasp, a success rate will be 

calculated.  

B) Gaussian Process for machine learning 

Gaussian process can be seen as building a distribution 
model for input features. In a simple word, Gaussian 

process can present the distribution of a given input’s result. 

Consider 𝑓 ∈ ℝ𝑛  is normally distributed if 
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 and lengthscale  are both called 

hyperparameters, which can be modified to affect learning 
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The ultimate goal is to predict the output *y when given an 

input. The function of *y | y is similar with that of f | y, the 

only difference is that f is replaced by *y . 
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During training process, data is gathered and f is updated 
according to observations. Exactly, what need update is the 

mean and covariance of f.  

 

According to the multi-dimensional input problem in this 

project, the Automatic Relevance Determination (ARD) SE 

covariance function is employed. 
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where 
d

 determines the relevancy of input features. If 
d


is very large, the feature is irrelevant. 

 

In this project, GP is used as a classification, so the output 

should be 0 or 1, 

( 1 | ) ( )p y f f   

where ( )f  is sigmoid function. In order of obtain the 

estimation of *y under the condition of y, two steps need to 

implement. First, it needs to compute the distribution of the 

latent variable corresponding to test data, 

( * | ) ( * | ) ( | )p f y p f f p f y df   

where ( | )p f y
 
is the posterior over f. Secondly, the above 

distribution is used to produce a probabilistic prediction of 
*y . 

 ( * 1 | ) * ( * | ) *p y y f p f y df    



However, ( | )p f y is intractable. Therefore, Laplace’s 

method is employed here to utilize a Gaussian 

approximation ( | )q f y  to posterior. Finally, a method to 

update mean and covariance will be obtained, which is 

similar to the main idea in regression problem. 

 

As illustrated in Fig. 4.4, the gray area stands for 

variance. Initially a non-parametric prior over functions is 

given, which are shown in the upside figure. Then, training 

data is used to update the mean and covariance of the 

output corresponding to each input, and obtain the posterior 

like the downside figure. Therefore, prediction of output 

can be processed when a new input is given. 

 

 
Fig. 4.4 Gaussian process for machine learning 

C) Training and Testing 

Assume that a Gaussian process classifier has already 

been built, and all parameters have been set with a right 

value. The next step is to find a way to training the 

classifier and verify its performance using the limited data 

set. Since the process of generating and testing grasps is 
time-consuming, only hundreds of grasp data is 

accumulated. Therefore, these data must be fully utilized to 

achieve a better classification perform.  

V. EXPERIMENT AND RESULT 

In experiment step, all of practical problems need to be 

considered in, such as how to determine the 

hyperparameters, how to verify the performance of the 

classifier, how many PCs should be used as input, 

computing time, ect. 

 

First, the hyperparameters, which is similar with the 

kernel parameters in SVM, should be fixed. Unlike SVM, 

these parameters are much easier to be determined in GP. 
By minimizing the GP function using conjugate gradients, 

the hyperparameters will be obtained easily. Then, the only 

things that needed to be considered are training time and 

number of input. For almost all classifier, longer training 

time equals to better performance; however, over-fitting 

may break this expect at the same time. In order to avoid 

over-fitting, cross validation is applied to verify the 

classifier. Then, training time and number of input can be 

determined through experiments. 

A) Training Time 

In experiment, PCA is processed on the whole data first, 

and only the first three principle components (PC) are used 

to run GP. Currently, only PC1, PC2 and PC3 are 
processing in GP since the first three PCs will achieve a 

more performance which will be demonstrated in the 

following experiment results. Moreover, 80% observations 

are selected randomly from the raw data as training data, 

and the left 20% are used as test data. In each iteration, 

training data will be reselected using the same random rule. 

More iterations will result in lower variance in prediction, 

but the mean value will not be improved significantly. As is 

shown in Fig. 5.1, variance of ROC curve will be narrowed 

as the iterations increasing; the mean, however, does not 

change obviously expect becoming smoother. 

 

  
Iterations = 10  Iterations = 30  

  
Iterations = 50  Iterations = 100  

 
Fig. 5.1 Classification results of different training time 



From Fig. 5.1, a significant improvement on variance of 

ROC curve can be achieved by increasing iterations. 

However, there is a trade-off relation between iterations and 

computation time, which is shown in Table 5.1. 

Table 5.1 Compare of different iterations 

Iteration 10 30 50 100 

Time (s) 50.342 199.822 300.974 620.373 

FPR 0.1862 0.2926 0.2178 0.2172 

TPR 0.4643 0.6690 0.5034 0.5323 

AUC 0.6413 0.7224 0.6689 0.6817 

Error 0.0458 0.0353 0.0202 0.0161 

 

Through the table, it is easy to figure out that the AUC 

will not be improved by increasing iteration. And more 

iteration will dramatically increase computation time. 
Therefore, there is a trade-off relation between iteration and 

computation time. In this project, iteration of 30 is selected 

according the experiment result. 

B) Number of Input 

Similarly, experiments on different number of input are 

processed. For a direct view, some figures are shown in Fig. 

5.2. After PCA, all PCs are sorted in descending order 

according to the eigenvalue. 

 

  
Input  = 1 Input  = 3  

  
Input  = 8  Input  = 12  

Fig. 5.2 Classification results of different number of input 

The detailed results are shown in Table 5.2. From the 

experiment result, it can be confidently concluded that more 

input does not mean better performance. So, three inputs 

(PC1, PC2 and PC3) should be an optimal option for this 

project. 

 

 

Table 5.2 Compare of different number of input 

Input Time (s) FPR TPR AUC Error 

1 68.890 0.2046 0.5449 0.6936 0.0336 

2 68.406 0.1992 0.5220 0.6966 0.0404 

3 199.822 0.2926 0.6690 0.7224 0.0353 

4 247.559 0.1829 0.5525 0.7082 0.0235 

5 355.653 0.1453 0.4911 0.6754 0.0212 

8 520.016 0.3884 0.7288 0.6895 0.0260 

12 754.245 0.4061 0.5697 0.5803 0.0341 

C) T-test in Metric Selection 

In order to chase a better performance, t-test is employed 

here to select which three metrics should be used, rather 

than directly using the first three PCs after PCA.  

 

T-test is a method to detect whether two groups of data 

obey similar distribution or not. In binary classification 

problem, more difference between the data of two classes is 

expected. In this project, t-test is applied on each metrics 

separately. Here, assume that all metrics are independent. 
After t-test, each metric will obtain a p-value which present 

the probability of that two classes within a metric belongs 

to a similar distribution (hard to be separated). In this 

project, smaller p-value is expected. Fig. 5.3 shows the p-

value of all twelve metrics. 

 

 
Fig. 5.3 p-value of all metrics 

Three metrics with the smallest p-value are selected as 

the input of GP. But these three metrics still need to be 

processed by PCA before training the GP classifier. In this 

case, Extension, Limit and Energy are selected according to 

p-value. The effect of t-test on the performance is shown in 

Fig. 5.4. 

 

  
After t-test Without t-test 

Fig. 5.4 Compare of t-test effect 



After t-test, AUC can reach 0.7872, which is higher than 

that without t-test (AUC=0.7224). And TPR reaches 

57.58%, when FPR is 13.13%. This result is much better 

than that without t-test. 

VI. CONCLUSION 

This paper presented Gaussian Process for classification 

and a little algorithm about SVM. Due to the complex com-

bination of radial basis function parameter γ and soft mar-

gin parameter C, SVM seem not to perform well as GP. 

Though four different combinations of γ and C need to be 

check, it is not enough to find an acceptable solution to 

implement the proper classification. On the other hand, GP 

get better results with proper training time after t-test. Also, 
it is not necessary to worry about how to determine and 

modify parameters when data set changes. So it makes GP 

more stable and easier to implement. However, GP have to 

deal with how to handle large matrices [2]. In other words, 

it will take quite a long time to complete the classification 

problem when the size of dimension of data is high enough. 

As a result, a significant limitation of GP is the computa-

tional constraints. Another essential issue is the choice of 

the covariance function. In this paper, Gaussian kernel is 

the prior selection. Nevertheless, the choice is to some level 

arbitrary. In fact, a lot of families of covariance kernel func-
tions with different features are applicable to GP.  

Further work for this paper would be test more kernel 

functions to adapt GP giving good predictions. Understand-

ing how other covariance functions with hyperparameters 

work will provide a potential opportunity for us to learn 

more about the data classification. 
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