
Identification of Grasp Quality Based on Learning Method

Zhifei Zhang

School of Mechanical, Industrial &

Manufacturing Engineering

zhanzhif@onid.orst.edu

Yuechuan Chen

School of Mechanical, Industrial &

Manufacturing Engineering

chenyuec@onid.orst.edu

Abstract
It is easy to generate a series of possible grasps through a

state-of-the-art automatic grasp planner, but it is hard to

figure out which grasp is better by the robot itself. A

learning-based approach is presented in this paper to solve

this problem. In order to develop an algorithm that predicts

the quality of a robotic grasp before execution, a large grasp
sample data set is collected, including human-planned

grasps and automatic grasps. This paper first conducts a

thorough statistical analysis of the ability of grasp metrics

that are commonly used in the robotics literature to

discriminate between good grasps and bad grasps. Then, the

principle component analysis is employed to obtain those

discriminative metrics, as well as reducing the dimension of

feature space. Finally, The Gaussian process algorithm is

applied to build a classifier that identifies grasp quality.

Moreover, through comparing human-planned and

automatic grasps, regions of poor exploration and regions
of poor performance will be identified, which can speed the

automatic searching of grasp planner dramatically.

I. INTRODUCTION

Learning-based control has been an explosion of work in

many areas over the last decade. Especially, robotic control

plays an important role in mapping from the state of the

arm (position, velocities and accelerations). When it comes
to robotic control, the most we concern about is how to

identify the good action from those bad ones. Consequently,

classification of robot grasp is necessary for future robot

learning.

The goal of this paper is to classify the grasps into good

and bad classes. In order to record the process of grasping,

Force sensors are used to generate twelve parameters [1].

However, there are significant difficulties of these methods.

Because of the complicate structure of human hand, it is

impossible to make a direct observation of its configuration

in grasping experiments. Another problem is limitation of
human-planned grasps through teleportation. Most robot

hand can only have 6 degrees of freedom, but a human hand

has over 22 degrees of freedom.

This paper will try to get over the challenges above to

identify the key of human grasping. Gaussian process (GP)

is employed to collect the data, which can give a

straightforward expression of human’s behavior [2].

Through the classification of these grasps, roboticist can

analyze the optimization of different features. But neither

choosing nor producing the best solution will not be

discussed in this paper.

In purpose of addressing these problems, two different

approaches can be applied in classification. The first one

sets up the class-conditional distribution p(x|y) and the

initial probabilities for each class, and then calculates the

fitted probability for each class. The other approach focuses

on model p(y|x) directly. Because classification problem is

a binary (two-class, C=2), the main idea is to transfer the

output of a regression model into a class distribution.

The contribution of this paper is to use GP combined
with function approximation (mean and covariance

functions) to implement classification problems. To reduce

the dimensionality of grasping, principal component

analysis will be applied in data collecting. Also, supervised

learning is used to find how adjustable parameters in

covariance functions can be inferred from the training

dataset.

In Section 2, the two main techniques to transfer the data

and classify them are introduced. Section 3 shows some

relevant algorithm compare with GP. The approaches that

are applied in the grasp prediction are presented in Section
4. In Section 4, the results of classification are discussed.

II. BACKGROUND

Mainly two techniques will be used to build a grasp

quality prediction algorithm. This section provides

background information on the two main techniques. First,

a grasp sample data is an eleven or twelve dimensional

vector, and hundreds of grasp data will form a high
dimensional space. Obviously, it’s time-consuming to

analyze those data directly. Therefore, Principal Component

Analysis (PCA) is used for data dimensionality reduction.

Then it need to classify the grasp data (processed by PCA)

into good grasps and bad grasps, where Gaussian Process

(GP) algorithm is employed.

It has be known that those grasp metrics have strong

correlations between each other, and some metrics have

poor predictive ability. Moreover, correlations between the

grasp metrics can lead to poor performance and increase

computation costs during training process. In order to deal
with this problem, Principal Components Analysis (PCA) is

used to perform a dimensionality reduction of our data by

reducing the data to only the principal components that

preserve the majority of the data’s variance. Then different

number of principle components is test to search how many

PCs that are kept during leaning process will achieve better

performance. In this work, the high dimensional grasp

sample data is reduced as low as possible, maybe to three or

four dimensions, then project the data into those dimensions
and observe how it affects the classifier’s performance.

A Gaussian Process (GP) is a non-parametric model that

can be used for supervised learning. Specifically, given a

set of n training samples D = {(x1, y1), … , (xn, yn)}, where

xi is a feature vector and yi is the output value, the algorithm

learns a nonlinear function f(x) that generalizes from the

training data in order to predict the output value y for some

new data instance x. One of the key benefits of using a GP

for predicting grasps is its ability to model nonlinear

decision surfaces [3]. A GP is a stochastic process that

models a distribution over functions f(x), rather than just
modeling a single function f(x) [4, 5, 6]. In our work, each

data instance xi is a grasp, which has k features,

corresponding to the k grasp metrics used to represent it.

The GP is used to predict a continuous output value that

represents the quality of grasp.

III. RELATED ALGORITHMS

There are several machine learning techniques to

implement a binary classification by using a kernel function.

Support vector machine (SVM) and neural network—two

of the most effective ways to recognize the patterns of a

given data set.

A) Support Vector Machine

Support vector machine (SVM) can find a hyperplane to

separate the data points to different categories. It can also

address non-linear classification by using a kernel function

to map inputs into high-dimensional spaces. If the space is

defined as D dimensions, the hyperplane called classifier

would be D-1 dimensions [7]. The aim of SVM is to obtain

the largest distance of adjacent data points. SVM became
popular and pragmatic because of its extension of soft

margin. Soft margin method provides an increment of the

distance between data points. The increment makes it easy

to choose a hyperplane which can split the samples. As a

common kernel, Gaussian radial basis function can be a

useful one used in SVM. It is because the space that

Gaussian radial basis function maps input into is a Hilbert

space of infinite dimensions [8]. The single parameter γ of

Gaussian kernel is the key to regularize the margin

classifiers. Various combinations of γ and soft margin

parameter can generate different model of classification,

which is also the main drawback of SVM [9]. Even though
cross validation is applied during processing, it is still hard

to get a satisfied result. Some attempt on SVM will be

performed in this paper, as well as a compare between

SVM and Gaussian process

B) Neural Network

Neural network is a little similar to biological neural

networks to some extent. However, modern version of

neural network is totally different from biology to adjust

itself to a more practical system on signal processing. It

builds the connection between inputs and outputs by
updating network weights to minimize error. The most

difficulty of neural network is the complicate parameters

which is hard to interpret. The association of different

layers of neurons and the learning process for weights are

both challenges for most classification [10].

C) Attempt on SVM

Since the neural network needs to determine many

parameters, such as architecture, activation functions and

learning rate, it does not a practical solution for the problem

in this paper. So, only SVM will be discussed here. The

distribution of collected grasp data is shown in Fig. 3.1,

where the data are all processed by PCA, and only first two

and three principle components are presented.

Fig. 3.1 Data distribution in 2D and 3D

(red points are good grasps, blue points are bad ones)

Applying SVM on the data and modifying its parameter,

a ROC curve can be obtained to present the performance of
SVM, as shown in Fig. 3.2.

Fig. 3.2 ROC curve of SVM

Usually, a classifier’s predictions are used to create a
Receiver Operating Curve (ROC) to analyze performance

trade-offs. ROC is a common tool used in the machine

learning community for evaluating the performance of a

classifier. The shape of the ROC curve indicates how good

the classifier is at keeping False Positive Rates (FPR) low

and True Positive Rate (TPR) high.

The area under the curve (AUC) value predicts the
robustness of a classifier by showing its probability to

correctly classify a grasp. An AUC value of 1 indicates

perfect performance, and an AUC value of 0.5 indicates

that the classifier behaves similar to random guessing.

IV. APPROACH

A) Data Preparation

First of all, grasp data is generated. It can be used for

obtain features vector, based on which good and bad grasps

are identified. Here, the software named GraspIt, shown in
Fig 4.1 is applied to generate grasps automatically through

a state-of-the-art grasp planner. Given a common object,

such as water bottle, soda can, remoter, and wineglass, the

planner can generate tens of ways to grasp it.

Fig. 4.1 A grasp generated by GraspIt

Then, features of each available grasp is computed

according to those raw data, including position and rotation

of hand and object, contact point of finger tips, spread of
fingers. These features will be the metrics to evaluate the

quality of the grasps. Totally, twelve metric are involve in

this project, shown by Table 4.1. They have been proposed

in prior literature to infer grasp quality [11].

Table 4.1 Metrics to infer grasp quality

Metric Description

Point Arrangement
proximity of fingertips
being in a plane parallel to

palm

Triangle Size

Volume of the triangular

prism consisting of the

finger tips and the palm

Finger Extension Average finger flexion

Finger Spread
Amount of spread of the

fingers

Finger Limit Extent of finger extensions

Grasp Energy Distance of hand and object

Parallel Symmetry

Distance between center of

mass and contact point

centroid perpendicular to

object principal axis

Skewness

Alignment of the hand

principle axis parallel to the

object principle axis

Volume of Object Enclosed

Object volume enclosed by

hand normalized by object
volume

Wrench Space Volume
volume of grasp wrench

space

Perpendicular Symmetry

Distance between center of

mass and contact point

centroid along object

principle axis

Epsilon
Minimum disturbance

wrench that can be resisted

So, a grasp is presented by a 12-D vector, which means

all input will be displayed in a 12-D space. And hundreds or

more grasps need to be collected in the future. Those high
dimensional data will make learning slowly no matter

which kind of learning algorithm is employed. Moreover,

analyzing from the raw data, some metrics have relatively

narrow variance, which is obviously disadvantage for

identification. Thus, Principle Component Analysis (PCA)

is used here to achieve dimensional reduction purpose.

After PCA, the first one or more principle components may

be selected as input matrix 𝐗 = 𝑥 1 , 𝑥 2 , ⋯ , 𝑥 𝑛 , where

𝑥 𝑛 = 𝑥𝑛1 , 𝑥𝑛2 , ⋯ , 𝑥𝑛𝑚 T is m inputs for the nth metric.
How many components would achieve a better

classification performance depends on the experiment result.

In this project, maximum n should be 12, but in experiment
will only use less than four components.

Fig. 4.2 Simulation environment

In order to build a supervised learning loop, quality of

those generated grasps need to be given first. The method

of obtaining those outputs is shaking test, an experiment

from simulation world to real world. Specifically, the

grasps will be verified first in a simulation environment to

ensure that they are safe and available when executed on a

real robot hand. Fig. 4.2 shows the verification in

simulation environment (ROS and OpenRAVE).

Finally, the real robot hand and object can be calibrated

into the same posture and position as in the simulation

environment. The scenario of shaking test is shown in Fig.

4.3, which looks unmatched with Fig. 4.2 because they are

not the same grasp exactly. Here just want to illustrate how

the prior qualification data is obtained.

Fig. 4.3 Scenario of shaking test (quoted from lab source)

In shaking test, the object will be lifted after grasped by

the robot hand, and the robot hand will shake with certain

velocity and acceleration. If the hand can hold the object

during shaking, the grasp is success. Otherwise, if the

object falls down, the grasp is failed. From ten times of

repeat test for each signal grasp, a success rate will be

calculated.

B) Gaussian Process for machine learning

Gaussian process can be seen as building a distribution
model for input features. In a simple word, Gaussian

process can present the distribution of a given input’s result.

Consider 𝑓 ∈ ℝ𝑛 is normally distributed if

1

1
2 2

1
() 2 exp

2

n
T

p f K f m K f m

for mean vector
n

m and positive semi-definite

covariance matrix
n n

K

 . A multivariate Gaussian,

1 2
() [(), (), , ()]

n
f x f x f x f x , has a multivariate normal

distribution for
1 2

[, , ,]
n

x x x x .

() ((), (,))f x N m x K x x

where ()m x is the mean function, which is always set as

() 0m x . And
, 1,2, ,(,) [()],i j i j nK x x k x x is the

covariance function. Usually, squared exponential (SE)

kernel is applied here to calculate (),i jk x x ,

2

2

2

1
() exp

2
,

fi j i jk x xx x

where amplitude
f

 and lengthscale are both called

hyperparameters, which can be modified to affect learning

performance. Now, assume the prior or latent is

() (,)f fff x N m K and additive noise is
2

0(,)nn N I ,

then let y f n . So it can get

(,) (|) () ; ,
f ff fy

T

y fy yy

m K Kf
p y f p y f p f N

m K Ky

Then,

 1 1
| ,

T

fy yy y f ff fy yy fy
f y N K K y m m K K K K

The ultimate goal is to predict the output *y when given an

input. The function of *y | y is similar with that of f | y, the

only difference is that f is replaced by *y .

 1 1

* * * * * * * *
* | ,

T

y y y y y y y y y y yy y y
y y N K K y m m K K K K

During training process, data is gathered and f is updated
according to observations. Exactly, what need update is the

mean and covariance of f.

According to the multi-dimensional input problem in this

project, the Automatic Relevance Determination (ARD) SE

covariance function is employed.

2

2

1

1
() exp

2

'
, '

f

D
d d

d d

k x
x x

x

where
d

 determines the relevancy of input features. If
d

is very large, the feature is irrelevant.

In this project, GP is used as a classification, so the output

should be 0 or 1,

(1 |) ()p y f f

where ()f is sigmoid function. In order of obtain the

estimation of *y under the condition of y, two steps need to

implement. First, it needs to compute the distribution of the

latent variable corresponding to test data,

(* |) (* |) (|)p f y p f f p f y df

where (|)p f y

is the posterior over f. Secondly, the above

distribution is used to produce a probabilistic prediction of
*y .

 (* 1 |) * (* |) *p y y f p f y df

However, (|)p f y is intractable. Therefore, Laplace’s

method is employed here to utilize a Gaussian

approximation (|)q f y to posterior. Finally, a method to

update mean and covariance will be obtained, which is

similar to the main idea in regression problem.

As illustrated in Fig. 4.4, the gray area stands for

variance. Initially a non-parametric prior over functions is

given, which are shown in the upside figure. Then, training

data is used to update the mean and covariance of the

output corresponding to each input, and obtain the posterior

like the downside figure. Therefore, prediction of output

can be processed when a new input is given.

Fig. 4.4 Gaussian process for machine learning

C) Training and Testing

Assume that a Gaussian process classifier has already

been built, and all parameters have been set with a right

value. The next step is to find a way to training the

classifier and verify its performance using the limited data

set. Since the process of generating and testing grasps is
time-consuming, only hundreds of grasp data is

accumulated. Therefore, these data must be fully utilized to

achieve a better classification perform.

V. EXPERIMENT AND RESULT

In experiment step, all of practical problems need to be

considered in, such as how to determine the

hyperparameters, how to verify the performance of the

classifier, how many PCs should be used as input,

computing time, ect.

First, the hyperparameters, which is similar with the

kernel parameters in SVM, should be fixed. Unlike SVM,

these parameters are much easier to be determined in GP.
By minimizing the GP function using conjugate gradients,

the hyperparameters will be obtained easily. Then, the only

things that needed to be considered are training time and

number of input. For almost all classifier, longer training

time equals to better performance; however, over-fitting

may break this expect at the same time. In order to avoid

over-fitting, cross validation is applied to verify the

classifier. Then, training time and number of input can be

determined through experiments.

A) Training Time

In experiment, PCA is processed on the whole data first,

and only the first three principle components (PC) are used

to run GP. Currently, only PC1, PC2 and PC3 are
processing in GP since the first three PCs will achieve a

more performance which will be demonstrated in the

following experiment results. Moreover, 80% observations

are selected randomly from the raw data as training data,

and the left 20% are used as test data. In each iteration,

training data will be reselected using the same random rule.

More iterations will result in lower variance in prediction,

but the mean value will not be improved significantly. As is

shown in Fig. 5.1, variance of ROC curve will be narrowed

as the iterations increasing; the mean, however, does not

change obviously expect becoming smoother.

Iterations = 10 Iterations = 30

Iterations = 50 Iterations = 100

Fig. 5.1 Classification results of different training time

From Fig. 5.1, a significant improvement on variance of

ROC curve can be achieved by increasing iterations.

However, there is a trade-off relation between iterations and

computation time, which is shown in Table 5.1.

Table 5.1 Compare of different iterations

Iteration 10 30 50 100

Time (s) 50.342 199.822 300.974 620.373

FPR 0.1862 0.2926 0.2178 0.2172

TPR 0.4643 0.6690 0.5034 0.5323

AUC 0.6413 0.7224 0.6689 0.6817

Error 0.0458 0.0353 0.0202 0.0161

Through the table, it is easy to figure out that the AUC

will not be improved by increasing iteration. And more

iteration will dramatically increase computation time.
Therefore, there is a trade-off relation between iteration and

computation time. In this project, iteration of 30 is selected

according the experiment result.

B) Number of Input

Similarly, experiments on different number of input are

processed. For a direct view, some figures are shown in Fig.

5.2. After PCA, all PCs are sorted in descending order

according to the eigenvalue.

Input = 1 Input = 3

Input = 8 Input = 12

Fig. 5.2 Classification results of different number of input

The detailed results are shown in Table 5.2. From the

experiment result, it can be confidently concluded that more

input does not mean better performance. So, three inputs

(PC1, PC2 and PC3) should be an optimal option for this

project.

Table 5.2 Compare of different number of input

Input Time (s) FPR TPR AUC Error

1 68.890 0.2046 0.5449 0.6936 0.0336

2 68.406 0.1992 0.5220 0.6966 0.0404

3 199.822 0.2926 0.6690 0.7224 0.0353

4 247.559 0.1829 0.5525 0.7082 0.0235

5 355.653 0.1453 0.4911 0.6754 0.0212

8 520.016 0.3884 0.7288 0.6895 0.0260

12 754.245 0.4061 0.5697 0.5803 0.0341

C) T-test in Metric Selection

In order to chase a better performance, t-test is employed

here to select which three metrics should be used, rather

than directly using the first three PCs after PCA.

T-test is a method to detect whether two groups of data

obey similar distribution or not. In binary classification

problem, more difference between the data of two classes is

expected. In this project, t-test is applied on each metrics

separately. Here, assume that all metrics are independent.
After t-test, each metric will obtain a p-value which present

the probability of that two classes within a metric belongs

to a similar distribution (hard to be separated). In this

project, smaller p-value is expected. Fig. 5.3 shows the p-

value of all twelve metrics.

Fig. 5.3 p-value of all metrics

Three metrics with the smallest p-value are selected as

the input of GP. But these three metrics still need to be

processed by PCA before training the GP classifier. In this

case, Extension, Limit and Energy are selected according to

p-value. The effect of t-test on the performance is shown in

Fig. 5.4.

After t-test Without t-test

Fig. 5.4 Compare of t-test effect

After t-test, AUC can reach 0.7872, which is higher than

that without t-test (AUC=0.7224). And TPR reaches

57.58%, when FPR is 13.13%. This result is much better

than that without t-test.

VI. CONCLUSION

This paper presented Gaussian Process for classification

and a little algorithm about SVM. Due to the complex com-

bination of radial basis function parameter γ and soft mar-

gin parameter C, SVM seem not to perform well as GP.

Though four different combinations of γ and C need to be

check, it is not enough to find an acceptable solution to

implement the proper classification. On the other hand, GP

get better results with proper training time after t-test. Also,
it is not necessary to worry about how to determine and

modify parameters when data set changes. So it makes GP

more stable and easier to implement. However, GP have to

deal with how to handle large matrices [2]. In other words,

it will take quite a long time to complete the classification

problem when the size of dimension of data is high enough.

As a result, a significant limitation of GP is the computa-

tional constraints. Another essential issue is the choice of

the covariance function. In this paper, Gaussian kernel is

the prior selection. Nevertheless, the choice is to some level

arbitrary. In fact, a lot of families of covariance kernel func-
tions with different features are applicable to GP.

Further work for this paper would be test more kernel

functions to adapt GP giving good predictions. Understand-

ing how other covariance functions with hyperparameters

work will provide a potential opportunity for us to learn

more about the data classification.

REFERENCE

[1] V. M. Zatsiorsky and M. L. Latash, ―Multifinger-

prehension: Anoverview,‖ J. Motor Behav, vol. 40, no.

5, pp. 446–475, 2008.

[2] Rasmussen, C. E. ―Gaussian Processes in Machine

Learning,‖ Advanced Lectures on Machine Learning,

Lecture Notes in Computer Science 3176. pp. 63–71.

doi:10.1007/978-3-540-28650-9_4, 2004

[3] Alex K. Goins, ―Evaluating the Efficacy of Grasp

Metrics For Grasp Prediction,‖ ACRA, 2014

[4] C. E. Rasmussen, ―Gaussian processes for machine

learning,‖ MIT Press, 2006.
[5] Y. Altun, T. Hofmann, and A. J. Smola. ―Gaussian

process classification for segmenting and annotating

sequences,‖ ACM, 2004.

[6] Ed Snelson, ―Tutorial: Gaussian process models for

machine learning,‖ Gatsby Computational Neuro-

science Unit, UCL, 2006.

[7] Aizerman, Mark A. Braverman, Emmanuel M. and

Rozonoer, "Theoretical foundations of the potential

function method in pattern recognition learning,"

Automation and Remote Control 25: 821–837.

[8] Lee, Y. Lin, Y. and Wahba, G. (2001). "Multicategory

Support Vector Machines," Computing Science and

Statistics 33.

[9] Hsu, Chih-Wei, Chang, Chih-Chung, ―A Practical
Guide to Support Vector Classification (Technical

report),‖ Department of Computer Science and

Information Engineering, National Taiwan University.

[10] D. C. Ciresan, U. Meier, J. Schmidhuber, ―Multi-

column Deep Neural Networks for Image

Classification,‖ IEEE Conf. on Computer Vision and

Pattern Recognition CVPR 2012.

[11] Ravi Balasubramanian, ―Physical Human Interactive

Guidance: Identifying Grasping Principles From

Human-Planned Grasps,‖ IEEE Transactions on

Robotics, vol. 28, No. 4, 2012.8

